R10 media

RPMI + 10% FBS + supplements

500 ml (1 bottle) RPMI1640 with L-Glu (Mediatech)
55 ml Heat-inactivated FBS (PAA)
5.5 ml L-Glutamine (200 mM) (Mediatech)

5.5 ml or 11 ml* Penicillin/Streptomycin (100x or 50x) (Mediatech)

5.5 ml HEPES buffer (1 M) (Mediatech)

- 1. Add the ingredients listed above to the bottle of RPMI and mix well by shaking the bottle.
- 2. Store at 4 C.

Notes

- FBS should be heat inactivated (HI) at 56 C for 30 min if it has not already been heat inactivated by the supplier.
- L-glutamine is provided in a 200 mM stock and diluted 1:100 to give a 2 mM working concentration
- Penicillin / streptomycin is provided as either a 100x or 50x solution. In the end, we want a working concentration of 100 U/ml / 100 ug/ml.
 - o 100x solution (10,000 U/ml / 10,000 ug/ml stock): Add 5.5 ml to dilute 1:100.
 - o 50x solution (5,000 U/ml / 5,000 ug/ml stock): Add 11 ml to dilute 1:50.
- HEPES buffer is provided in a 1 M stock and diluted 1:100 to give a 10 mM working concentration.

IL-2 stock solution

Recombinant human IL-2 at 10⁶ U/ml

- 1. Make 10 ml of 100 mM acetic acid in autoclaved Nanopure water.
 - a. For example, start with glacial acetic acid (17.5 M) and dilute several times in water.
- 2. Make 10 ml of 0.2% BSA in PBS.
- 3. Sterile filter each solution separately using a 0.2 um syringe filter.
- 4. Take a vial of recombinant human IL-2 (10 ug, Peprotech, Cat. #200-02). Do a hard spin in the centrifuge to pellet any lyophilized protein flakes that might be sticking to the wall or lid.
- 5. Resuspend the IL-2 in 50 ul of the sterile-filtered 100 mM acetic acid solution.
- 6. Add 50 ul of the 0.2% BSA solution.
- 7. Mix by pipetting.
- 8. Divide the stock solution (100 ul of IL-2 at 10⁶ U/ml) into 5.5 ul aliquots.
- 9. Store the aliquots at -80 C.

Notes

According to the Peprotech website, the IL-2 has a specific activity of >10⁷ U/mg, so a 0.1 mg/ml stock should correspond to at least 10⁶ U/ml.

R10/100 media

R10 + 100 U/ml IL-2

50 ml R10 media

5 ul IL-2 stock solution (10⁶ U/ml), freshly thawed

- 1. Add 50 ml R10 to a 50 ml conical tube.
- 2. Take an aliquot of IL-2 stock solution from the -80 C freezer and thaw on ice.
- 3. Add 5 ul of IL-2 to the R10 and mix well.
- 4. Use immediately or store at 4 C for up to 1 week.

<u>Notes</u>

• The IL-2 in the R10/100 is only good for 1 week, so make R10/100 in small batches (e.g., 50 ml) and only use for one or two feedings.

NK-92 cell culture

Background

- NK-92 is an IL-2 dependent NK cell line derived from a patient with lymphoma.
- NK-92 are suspension cells that grow as clumps and single cells.
- It is common for cell debris to be visible in the culture media.
- For more information, see the ATCC website (Cat. # ATCC CRL-2407)
 - http://www.atcc.org/products/all/CRL-2407.aspx#357C3571006A4259B64650D34DF19048
 - The culture media recommended on the website is different from the one described in this protocol.

Thawing cells

- 1. Pre-warm (37 C) 9 ml of R10 media in a 15 ml conical tube.
- 2. In a separate 15 ml conical tube, pre-warm (37 C) 10 ml of R10/100 for culturing.
- 3. Retrieve the vial of cells from the LN2 storage.
- 4. Rapidly thaw the cells in a 37 C water bath by gently shaking the vial back and forth. Stop when a small sliver of ice remains (typically ~1 min).
- 5. Bring the cells to the TC hood and wipe the vial down with 70% ethanol.
- 6. Use a P1000 pipette to transfer ~500 ul of the warmed R10 media to the thawed cells. Transfer drop-by-drop to avoid osmotic shock.
- 7. Transfer the thawed cell suspension to the tube of R10.
- 8. Centrifuge at 340 g (1300 rpm) for 7 min to pellet the cells.
- 9. Aspirate media and resuspend cells in the 10 ml of pre-warmed R10/100 media.
- 10. Count cells.
- 11. Transfer to a T25 culture flask and place in the incubator (37 C, 5% CO2). The flask can be horizontal or vertical; either is fine.

Culturing cells

NK-92 cells are sensitive to overgrowth and media exhaustion, so they should be split every 2-3 days. They should be maintained at $0.1 - 0.4 \times 10^6$ cells/ml in R10/100.

- 1. Pre-warm (37 C) and equilibrate R10/100 media by placing the media in the incubator in a tube with the lid loosened or in a cell culture flask.
- 2. Move the cell suspension to a conical tube. Pipette gently to break up the clumps and form a single cell suspension.
- 3. Count cells.
- 4. Centrifuge at 340 g (1300 rpm) for 7 min to pellet the cells.
- 5. Resuspend cells in an appropriate amount of R10/100 and move to a culture flask. Place in the incubator.

Freezing cells

- 1. Collect cells into a conical tube and count cells.
- 2. Prepare freezing media. Keep on ice until use.

Fetal bovine serum (FBS), heat inactivated	90% by volume (e.g., 9 ml)
DMSO	10% by volume (e.g., 1 ml)

- 3. Centrifuge cell suspension at 340 g (1300 rpm) for 7 min to pellet cells.
- 4. While cells are spinning down, label the appropriate number of cryovials.
- 5. Resuspend cells at desired concentration (e.g., 10⁷ cells/ml) in ice-cold freezing media.
- 6. Aliquot 0.5 1 ml of cell suspension (5 10 M cells/vial) into the cryovials.
- 7. Place the cryovials in a chilled Mr. Frosty (filled with isopropyl alcohol).
- 8. Transfer Mr. Frosty to a -80 C freezer.
- 9. The next day, remove the cells from Mr. Frosty and transfer them to a box in the liquid nitrogen storage vessel (-196 C).